Building Manipulate Demonstrations in Mathematica
Purpose
Section titled “Purpose”Manipulate creates interactive visualizations where parameters can be adjusted in real-time. Essential for:
- Building intuition about mathematical relationships
- Creating demonstrations for the dissertation
- Exploring parameter spaces quickly
When to Use
Section titled “When to Use”- Visualizing how a function changes with parameters
- Creating educational demonstrations
- Rapid prototyping of ideas before formal analysis
- Exporting interactive HTML for the blog
Basic Syntax
Section titled “Basic Syntax”Manipulate[ expression, {variable, min, max}]The expression is re-evaluated whenever variable changes.
Example: Simple Case
Section titled “Example: Simple Case”Manipulate[ Plot[Sin[n x], {x, 0, 2 Pi}], {n, 1, 10, 1}]Output: A sine wave with adjustable frequency. The slider goes from 1 to 10 in steps of 1.
Example: Applied to Dissertation
Section titled “Example: Applied to Dissertation”Binary Entropy Function Explorer
Section titled “Binary Entropy Function Explorer”Manipulate[ Module[{h, tangent}, h[p_] := If[p == 0 || p == 1, 0, -p Log2[p] - (1 - p) Log2[1 - p]]; tangent = h[p0] + h'[p0] (p - p0) /. p -> x;
Plot[{h[x], tangent}, {x, 0.001, 0.999}, PlotRange -> {0, 1.1}, PlotStyle -> {Blue, {Red, Dashed}}, AxesLabel -> {"p", "H(p)"}, PlotLabel -> StringForm["H(``} = `` bits", NumberForm[p0, {3, 2}], NumberForm[h[p0], {3, 3}]], Epilog -> {PointSize[Large], Red, Point[{p0, h[p0]}]} ] ], {{p0, 0.5, "Probability p"}, 0.01, 0.99, Appearance -> "Labeled"}, ControlPlacement -> Top]This creates an interactive exploration of the binary entropy function with:
- Slider for probability
- Tangent line showing the derivative
- Current entropy value displayed
Common Patterns
Section titled “Common Patterns”Pattern 1: Multiple Sliders
Section titled “Pattern 1: Multiple Sliders”Manipulate[ Plot[a Sin[b x + c], {x, 0, 2 Pi}], {{a, 1, "Amplitude"}, 0.1, 2}, {{b, 1, "Frequency"}, 0.5, 5}, {{c, 0, "Phase"}, 0, 2 Pi}]Pattern 2: Discrete Choices
Section titled “Pattern 2: Discrete Choices”Manipulate[ Plot[PDF[dist, x], {x, -5, 10}], {{dist, NormalDistribution[], "Distribution"}, {NormalDistribution[] -> "Normal", ExponentialDistribution[1] -> "Exponential", PoissonDistribution[3] -> "Poisson"}}]Pattern 3: 2D Parameter Space
Section titled “Pattern 3: 2D Parameter Space”Manipulate[ ContourPlot[f[x, y, a, b], {x, -2, 2}, {y, -2, 2}], {{a, 1}, -2, 2}, {{b, 1}, -2, 2}, ControlType -> Slider2D]Pattern 4: Animation-Ready
Section titled “Pattern 4: Animation-Ready”Manipulate[ expr, {t, 0, 10, AnimationRate -> 1}]Click the ”+” to access play/pause controls.
Gotchas
Section titled “Gotchas”[!warning] Watch Out
1. Slow updates: If
expressionis computationally expensive, the interface will lag. UseContinuousAction -> Falseto only update on release.2. Variable scoping: Variables inside
Manipulatecan conflict with global definitions. Wrap complex logic inModule[].3. Initial values: Always specify sensible defaults:
{{x, defaultValue, "Label"}, min, max}4. Export limitations: Not all features survive HTML export. Test early.
Performance Notes
Section titled “Performance Notes”For expensive computations:
Manipulate[ expression, {param, min, max}, ContinuousAction -> False, (* Only update on release *) SynchronousUpdating -> False (* Allow interruption *)]For very heavy computations, precompute a table and interpolate:
data = Table[ExpensiveFunction[p], {p, 0, 1, 0.01}];interp = Interpolation[Transpose[{Range[0, 1, 0.01], data}]];
Manipulate[ Plot[interp[x], {x, 0, 1}], {param, 0, 1}]Related Tools
Section titled “Related Tools”- [[Mathematica Plot Customization]]
- [[Exporting Mathematica to HTML]]
- [[Dynamic and DynamicModule]]
References
Section titled “References”- Wolfram Documentation: Manipulate
- Wolfram U: “Interactive Visualization” course